Who am I?

Foto saya
batam, kepri, Indonesia
Mahasiswi jurusan Elektronika : Computer and Telecomunication Enginering, Prodi Teknik Elektro, Politeknik Negeri Batam,
Frédéric Chopin!!!!
my favoritest composer!!!!
all things have a story behind it :)
PRAKTIKUM 8
EEPROM  MEMORY

TUJUAN :
 1.   Mampu membuat program untuk melakukan penyimpanan data pada memori eeprom. 
 2.   Mampu membuat program untuk melakukan pembacaan data dari memori eeprom.

PERALATAN  :
1.   Komputer             : 1 set
2.   Arduino Uno        : 1 pcs
3.   Kabel USB tipe B : 1 pcs

PERCOBAAN  :
8.1 Baca dan Tulis Memori EEPROM
       Pada percobaan kali ini akan dibuat program yang berfungsi sebagai antarmuka
penanganan memori eeprom.  Antarmuka program menggunakan komunikasi serial.
Melalui Serial Terminal atau aplikasi lainnya, user dapat melakukan perintah baca dan
tulis dari atau ke memori eeprom.
Prosedur :
1.   Tuliskan  sintaks  program  berikut  ini  pada  Arduino  IDE,  kemudian  lakukan
kompilasi dan upload program ke mikrokontroler,
#include <EEPROM.h>
boolean exitProgram = 0;

void setup() { Serial.begin(9600);
}
Serial.println("=========  EEPROM Access Via Serial  ========");
Serial.println("Type this command to execute EEPROM operation");
Serial.println("write : For write data to EEPROM");
Serial.println("read  : For read data from EEPROM");
Serial.println("clear : For clear all data in EEPROM");
Serial.println("exit  : For exit from program");





void loop() {
int command;
while(!exitProgram) {
}
}
do {
Serial.print("Type Command >> ");
while(Serial.available()==0);
command = readCommandFromSerial();
switch(command) {
case 1 : Serial.println("Write EEPROM Selected");
writeEEPROM();
break;
case 2 : Serial.println("Read EEPROM Selected");
readEEPROM();
break;
case 3 : Serial.println("Clear EEPROM Selected");
clearEEPROM();
Serial.println("Clear EEPROM Finished");
break;
case 4 : Serial.println("Exit From Program");
exitProgram = 1;
break;
default : Serial.println("Wrong Command, Please Type Again !");
break;
}
}
while(command == 0);

int readCommandFromSerial() { char stringFromSerial[10]; char data;
int command;
int countData = 0;





for(int i=0;i<10;i++) {
stringFromSerial[i]=0;
}
while(true) {
if(Serial.available()) { data = Serial.read(); Serial.write(data); if(data=='\n') {
break;
}
}
}
else {
if(data!='\r') {
stringFromSerial[countData] = data;
countData++;
}
}
if(strcmp(stringFromSerial,"write")==0){
command = 1;
}
else if(strcmp(stringFromSerial,"read")==0){
command = 2;
}
else if(strcmp(stringFromSerial,"clear")==0){
command = 3;
}
else if(strcmp(stringFromSerial,"exit")==0){
command = 4;
}
else{
command = 0;
}
return command;
}


}

}



int readValFromSerial() { char stringFromSerial[10]; char data;
int val;
int countData = 0;
for(int i=0;i<10;i++) {
stringFromSerial[i]=0;
}
while(true) {
if(Serial.available()) {
data = Serial.read();
Serial.write(data);
if(data=='\n') {
break;
}
else {
}
}
if(data!='\r') { stringFromSerial[countData] = data; countData++;
}
}
sscanf(stringFromSerial,"%d",&val);
return val;
void clearEEPROM() {
for(int i=0;i<512;i++) { EEPROM.write(i,0);
}
void writeEEPROM() {
int address;
do {
Serial.print("Address : "); address = readValFromSerial(); if(address>512) {
Serial.println("Addres maximal is 512 !, Please type again !");




}
}
while(address>512);
int data;
do {
Serial.print("Data : "); data = readValFromSerial(); if(data>512) {
Serial.println("Data maximal is 512 !, Please type again !");
}
}
while(data>512); EEPROM.write(address,data); Serial.println("EEPROM Write
Success !");
}
void readEEPROM()
{
int address;
do {
Serial.print("Address : "); address = readValFromSerial(); if(address>512) {
Serial.println("Addres maximal is 512 !, Please type again !");
}
}
while(address>512);
int data = EEPROM.read(address);
Serial.print("Data in Address ");
Serial.print(address,DEC); Serial.print(" : "); Serial.println(data,DEC);
}

Tugas dan Pertanyaan :

1.   Jalankan aplikasi Serial Monitor pada Arduino, pastikan konfigurasi Serial Monitor
menggunakan baudrate 9600 dan pada akhir pengiriman data disertakan karakter
CR + LF. Lakukan penulisan data pada memori alamat 100, dengan data bernilai
10.  Kemudian  keluar  dari  program dan  matikan  power  Arduino  dan  nyalakan
kembali. Lakukan pembacaan data pada alamat 100, berapakah nilai data pada
alamat 100 ? Apakah data yang dituliskan sebelumnya hilang ?
Nilai data pada alamat 100 adalah 10 dan data yang dituliskan sebelumnya tidak
hilang.
2.   Kenapa pada program penulisan data hanya dibatasi sampai 512 ? Jelaskan !
Karena 
Karena, kapasitas memory pada EEPROM di Arduino hanya 512 Byte.
3.   Kenapa pada program alamat memori yang dapat ditulisi data hanya sampai 512 ?
Jelaskan !
Karena batas memori EEPROM hanya di tulis maksimal dari alamat 0 sampai 512
4.   Buatlah kesimpulan dari praktikum ini !
Kesimpulan dari praktikum ini adalah dengan menggunakan EEPROM kita dapat
menyimpan data yang tidak akan hilang meski power Arduino telah dimatikan.


    Operational Amplifier atau di singkat op-amp merupakan salah satu komponen analog yang popular digunakan dalam berbagai aplikasi rangkaian elektronika. Aplikasi op-amp popular yang paling sering dibuat antara lain adalah rangkaian inverter, non-inverter, integrator dan differensiator. Pada pokok bahasan kali ini akan dipaparkan beberapa aplikasi op-amp yang paling dasar, dimana rangkaian feedback (umpan balik) negatif  memegang peranan penting. Secara umum, umpanbalik positif akan menghasilkan osilasi sedangkan umpanbalik negatif menghasilkan penguatan yang dapat terukur.  

Op-amp ideal
Op-amp pada dasarnya adalah sebuah differential amplifier (penguat diferensial) yang memiliki dua masukan. Input (masukan) op-amp seperti yang telah dimaklumi ada yang dinamakan input inverting dan non-inverting. Op-amp ideal memiliki open loop gain (penguatan loop terbuka) yang tak terhingga besarnya. Seperti misalnya op-amp LM741 yang sering digunakan oleh banyak praktisi elektronika, memiliki karakteristik tipikal open loop gain sebesar 104 ~ 105. Penguatan yang sebesar ini membuat op-amp menjadi tidak stabil, dan penguatannya menjadi tidak terukur (infinite). Disinilah peran rangkaian negative feedback (umpanbalik negatif) diperlukan, sehingga op-amp dapat dirangkai menjadi aplikasi dengan nilai penguatan yang terukur (finite). Impedasi input op-amp ideal mestinya adalah tak terhingga, sehingga mestinya arus input pada tiap masukannya adalah 0. Sebagai perbandingan praktis, op-amp LM741 memiliki impedansi input  Zin = 106 Ohm. Nilai impedansi ini masih relatif sangat besar sehingga arus input op-amp LM741 mestinya sangat kecil.

Ada dua aturan penting dalam melakukan analisa rangkaian op-amp berdasarkan karakteristik op-amp ideal. Aturan ini dalam beberapa literatur dinamakan golden rule, yaitu :

Aturan 1 : Perbedaan tegangan antara input v+ dan v- adalah nol (v+ - v- = 0 atau v+ = v- )
Aturan 2 : Arus pada input Op-amp adalah nol (i+ = i- = 0)

Inilah dua aturan penting op-amp ideal yang digunakan untuk menganalisa rangkaian op-amp.

Inverting amplifier
Rangkaian dasar penguat inverting adalah seperti yang ditunjukkan pada gambar 1, dimana sinyal masukannya dibuat melalui input inverting. Seperti tersirat pada namanya, pembaca tentu sudah menduga bahwa fase keluaran dari penguat inverting ini akan selalu berbalikan dengan inputnya. Pada rangkaian ini, umpanbalik negatif di bangun melalui resistor R2.


gambar 1 : penguat inverter

Input non-inverting pada rangkaian ini dihubungkan ke ground, atau v+ = 0. Dengan mengingat dan menimbang aturan 1 (lihat aturan 1), maka akan dipenuhi v- = v+ = 0. Karena nilainya = 0 namun tidak terhubung langsung ke ground, input op-amp v- pada rangkaian ini dinamakan virtual ground. Dengan fakta ini, dapat dihitung tegangan jepit pada R1 adalah vin – v- = vin dan tegangan jepit pada reistor R2 adalah vout – v- = vout. Kemudian dengan menggunakan aturan 2, di ketahui bahwa :
iin + iout = i- = 0, karena menurut aturan 2, arus masukan op-amp adalah 0.
iin + iout = vin/R1 + vout/R2 = 0
Selanjutnya
vout/R2 = - vin/R1 .... atau
vout/vin = - R2/R1
Jika penguatan G didefenisikan sebagai perbandingan tegangan keluaran terhadap tegangan masukan, maka dapat ditulis 
Impedansi rangkaian inverting didefenisikan sebagai impedansi input dari sinyal masukan terhadap ground. Karena input inverting (-) pada rangkaian ini diketahui adalah 0 (virtual ground) maka impendasi rangkaian ini tentu saja adalah Zin = R1.


Non-Inverting amplifier
 
Prinsip utama rangkaian penguat non-inverting adalah seperti yang diperlihatkan pada gambar 2 berikut ini. Seperti namanya, penguat ini memiliki masukan yang dibuat melalui input non-inverting. Dengan demikian tegangan keluaran rangkaian ini akan satu fasa dengan tegangan inputnya. Untuk menganalisa rangkaian penguat op-amp non inverting, caranya sama seperti menganalisa rangkaian inverting. 


gambar 2 : penguat non-inverter


Dengan menggunakan aturan 1 dan aturan 2, kita uraikan dulu beberapa fakta yang ada, antara lain :
vin = v+
v+ = v-  = vin ..... lihat aturan 1.
Dari sini ketahui tegangan jepit pada R2 adalah vout – v- = vout – vin, atau iout = (vout-vin)/R2. Lalu tegangan jepit pada R1 adalah v- = vin, yang berarti arus iR1 = vin/R1.
Hukum kirchkof pada titik input inverting merupakan fakta yang mengatakan bahwa :
  iout + i(-) = iR1
Aturan 2 mengatakan bahwa i(-) = 0 dan jika disubsitusi ke rumus yang sebelumnya, maka diperoleh 
 iout = iR1 dan Jika ditulis dengan tegangan jepit masing-masing maka diperoleh 
 (vout – vin)/R2 = vin/R1 yang kemudian dapat disederhanakan menjadi :
vout = vin (1 + R2/R1
Jika penguatan G adalah perbandingan tegangan keluaran terhadap tegangan masukan, maka didapat penguatan op-amp non-inverting :
Impendasi untuk rangkaian Op-amp non inverting adalah impedansi dari input non-inverting op-amp tersebut. Dari datasheet, LM741 diketahui memiliki impedansi input Zin = 108 to 1012 Ohm.


Integrator
 
Opamp bisa juga digunakan untuk membuat rangkaian-rangkaian dengan respons frekuensi, misalnya rangkaian penapis (filter). Salah satu contohnya adalah rangkaian integrator seperti yang ditunjukkan pada gambar 3. Rangkaian dasar sebuah integrator adalah rangkaian op-amp inverting, hanya saja  rangkaian umpanbaliknya (feedback) bukan resistor melainkan menggunakan capasitor C. 


gambar 3 : integrator


Mari kita coba menganalisa rangkaian ini. Prinsipnya sama dengan menganalisa rangkaian op-amp inverting. Dengan menggunakan 2 aturan op-amp (golden rule) maka pada titik inverting akan didapat hubungan matematis :

iin = (vin – v-)/R = vin/R , dimana v- = 0 (aturan1)
iout =  -C d(vout – v-)/dt = -C dvout/dt;  v- = 0
iin = iout ; (aturan 2)

Maka jika disubtisusi, akan diperoleh persamaan :

iin = iout = vin/R = -C dvout/dt, atau dengan kata lain
 
Dari sinilah nama rangkaian ini diambil, karena secara matematis tegangan keluaran rangkaian ini merupakan fungsi integral dari tegangan input. Sesuai dengan nama penemunya, rangkaian yang demikian dinamakan juga rangkaian Miller Integral. Aplikasi yang paling populer menggunakan rangkaian integrator adalah rangkaian pembangkit sinyal segitiga dari inputnya yang berupa sinyal kotak.
Dengan analisa rangkaian integral serta notasi Fourier, dimana 
   f = 1/t dan   
  …(4)
 
penguatan integrator tersebut dapat disederhanakan dengan rumus
 
 
Sebenarnya rumus ini dapat diperoleh dengan cara lain, yaitu dengan mengingat rumus dasar penguatan opamp inverting
G =  - R2/R1. Pada rangkaian integrator (gambar 3) tersebut diketahui
 

Dengan demikian dapat diperoleh penguatan integrator tersebut seperti persamaan (5)  atau agar terlihat respons frekuensinya dapat juga ditulis dengan

Karena respons frekuensinya yang demikian, rangkain integrator ini merupakan dasar dari low pass filter. Terlihat dari rumus tersebut secara matematis, penguatan akan semakin kecil (meredam) jika frekuensi sinyal input semakin besar.
Pada prakteknya, rangkaian feedback integrator mesti diparalel dengan sebuah resistor dengan nilai misalnya 10 kali nilai R atau satu besaran tertentu yang diinginkan. Ketika inputnya berupa sinyal dc (frekuensi = 0), kapasitor akan berupa saklar terbuka. Jika tanpa resistor feedback  seketika itu juga outputnya akan saturasi sebab rangkaian umpanbalik op-amp  menjadi open loop (penguatan open loop opamp ideal tidak berhingga atau sangat besar). Nilai resistor feedback sebesar 10R akan selalu menjamin output offset voltage (offset tegangan keluaran) sebesar 10x sampai pada suatu frekuensi cutoff tertentu.


Differensiator
 
Kalau komponen C pada rangkaian penguat inverting di tempatkan di depan, maka akan diperoleh rangkaian differensiator seperti pada gambar 4. Dengan analisa yang sama seperti rangkaian integrator, akan diperoleh persamaan penguatannya :
Rumus ini secara matematis menunjukkan bahwa tegangan keluaran vout pada rangkaian ini adalah differensiasi dari tegangan input vin. Contoh praktis dari hubungan matematis ini adalah  jika tegangan input berupa sinyal segitiga, maka outputnya akan mengahasilkan sinyal kotak.


gambar 4 : differensiator


Bentuk rangkain differensiator adalah mirip dengan rangkaian inverting. Sehingga jika berangkat dari rumus penguat inverting 

  G = -R2/R
dan pada rangkaian differensiator diketahui :


maka jika besaran ini disubtitusikan akan didapat rumus penguat differensiator
Dari hubungan ini terlihat sistem akan meloloskan frekuensi tinggi (high pass filter), dimana besar penguatan berbanding lurus dengan frekuensi. Namun demikian, sistem seperti ini akan menguatkan noise yang umumnya berfrekuensi tinggi. Untuk praktisnya, rangkain ini dibuat dengan penguatan dc sebesar 1 (unity gain). Biasanya kapasitor diseri dengan sebuah resistor yang nilainya sama dengan R. Dengan cara ini akan diperoleh penguatan 1 (unity gain) pada nilai frekuensi cutoff tertentu.
 
Karakteristik Op-Amp
Kalau perlu mendesain sinyal level meter, histeresis pengatur suhu, osilator, pembangkit sinyal, penguat audio, penguat mic, filter aktif semisal tapis nada bass, mixer, konverter sinyal, integrator, differensiator, komparator dan sederet aplikasi lainnya, selalu pilihan yang mudah adalah dengan membolak-balik data komponen yang bernama op-amp. Komponen elektronika analog dalam kemasan IC (integrated circuits) ini memang adalah komponen  serbaguna dan dipakai pada banyak aplikasi hingga sekarang. Hanya dengan menambah beberapa resitor dan potensiometer, dalam sekejap (atau dua kejap) sebuah pre-amp audio kelas B sudah dapat jadi dirangkai di atas sebuah proto-board.
 
Penguat diferensial
Op-amp dinamakan juga dengan penguat diferensial (differential amplifier). Sesuai dengan istilah ini, op-amp adalah komponen IC yang memiliki 2 input tegangan dan 1 output tegangan, dimana tegangan output-nya adalah proporsional terhadap perbedaan tegangan antara kedua inputnya itu. Penguat diferensial seperti yang ditunjukkan pada gambar-1 merupakan rangkaian dasar dari sebuah op-amp.



gambar-1 : penguat diferensial
 

Pada rangkaian yang demikian, persamaan pada titik Vout adalah Vout = A(v1-v2) dengan A adalah nilai penguatan dari penguat diferensial ini. Titik input v1 dikatakan sebagai input non-iverting, sebab tegangan vout satu phase dengan v1. Sedangkan sebaliknya titik v2 dikatakan input inverting sebab berlawanan phasa dengan tengangan vout.
 


Diagram Op-amp
Op-amp di dalamnya terdiri dari beberapa bagian, yang pertama adalah penguat diferensial, lalu ada tahap penguatan (gain), selanjutnya ada rangkaian penggeser level (level shifter) dan kemudian penguat akhir yang biasanya dibuat dengan penguat push-pull kelas B. Gambar-2(a) berikut menunjukkan diagram dari op-amp yang terdiri dari beberapa bagian tersebut.





gambar-2 (a) : Diagram blok Op-Amp

gambar-2 (b) : Diagram schematic simbol Op-Amp
 
Simbol op-amp adalah seperti pada gambar-2(b) dengan 2 input, non-inverting (+) dan input inverting (-). Umumnya op-amp bekerja dengan dual supply (+Vcc dan –Vee) namun banyak juga op-amp dibuat dengan single supply (Vcc ground). Simbol rangkaian di dalam op-amp pada gambar-2(b) adalah parameter umum dari sebuah op-amp. Rin adalah resitansi input yang nilai idealnya infinit (tak terhingga). Rout adalah resistansi output dan besar resistansi idealnya 0 (nol). Sedangkan AOL adalah nilai penguatan open loop dan nilai idealnya tak terhingga.
 
Saat ini banyak terdapat tipe-tipe op-amp dengan karakterisktik yang spesifik. Op-amp standard type 741 dalam kemasan IC DIP 8 pin sudah dibuat sejak tahun 1960-an. Untuk tipe yang sama, tiap pabrikan mengeluarkan seri IC dengan insial atau nama yang berbeda. Misalnya dikenal MC1741 dari motorola, LM741 buatan National Semiconductor, SN741 dari Texas Instrument dan lain sebagainya. Tergantung dari teknologi pembuatan dan desain IC-nya, karakteristik satu op-amp dapat berbeda dengan op-amp lain. Tabel-1 menunjukkan beberapa parameter op-amp yang penting beserta nilai idealnya dan juga contoh real dari parameter LM714.

tabel-1 : parameter op-amp yang penting
Penguatan Open-loop 
Op-amp idealnya memiliki penguatan open-loop (AOL) yang tak terhingga. Namun pada prakteknya op-amp semisal LM741 memiliki penguatan yang terhingga kira-kira 100.000 kali. Sebenarnya dengan penguatan yang sebesar ini, sistem penguatan op-amp menjadi tidak stabil. Input diferensial yang amat kecil saja sudah dapat membuat outputnya menjadi  saturasi. Pada bab berikutnya akan dibahas bagaimana umpan balik bisa membuat sistem penguatan op-amp menjadi stabil.

Unity-gain frequency
Op-amp ideal mestinya bisa bekerja pada frekuensi berapa saja mulai dari sinyal dc sampai frekuensi giga Herzt. Parameter unity-gain frequency menjadi penting jika op-amp digunakan untuk aplikasi dengan frekuensi tertentu. Parameter AOL biasanya adalah penguatan op-amp pada sinyal DC. Response penguatan op-amp menurun seiring dengan menaiknya frekuenci sinyal input. Op-amp LM741 misalnya memiliki unity-gain frequency sebesar 1 MHz. Ini berarti penguatan op-amp akan menjadi 1 kali pada frekuensi 1 MHz. Jika perlu merancang aplikasi pada frekeunsi tinggi, maka pilihlah op-amp yang memiliki unity-gain frequency lebih tinggi. 

Slew rate
Di dalam op-amp kadang ditambahkan beberapa kapasitor untuk kompensasi dan mereduksi noise. Namun kapasitor ini menimbulkan kerugian yang menyebabkan response op-amp terhadap sinyal input menjadi lambat. Op-amp ideal memiliki parameter slew-rate yang tak terhingga. Sehingga jika input berupa sinyal kotak, maka outputnya juga kotak. Tetapi karena ketidak idealan op-amp, maka sinyal output dapat berbentuk ekponensial. Sebagai contoh praktis, op-amp LM741 memiliki slew-rate sebesar 0.5V/us. Ini berarti perubahan output op-amp LM741 tidak bisa lebih cepat dari 0.5 volt dalam waktu 1 us.

Parameter CMRR
Ada satu parameter yang dinamakan CMRR (Commom Mode Rejection Ratio). Parameter ini cukup penting untuk menunjukkan kinerja op-amp tersebut. Op-amp dasarnya adalah penguat diferensial dan mestinya tegangan input yang dikuatkan hanyalah selisih tegangan antara input v1 (non-inverting) dengan input v2 (inverting). Karena ketidak-idealan op-amp, maka tegangan persamaan dari kedua input ini ikut juga dikuatkan. Parameter CMRR diartikan sebagai kemampuan op-amp untuk menekan  penguatan tegangan ini (common mode) sekecil-kecilnya. CMRR didefenisikan dengan rumus CMRR = ADM/ACM yang dinyatakan dengan satuan dB. Contohnya op-amp dengan CMRR = 90 dB, ini artinya penguatan ADM (differential mode) adalah kira-kira 30.000 kali dibandingkan penguatan ACM (commom mode). Kalau CMRR-nya 30 dB, maka artinya perbandingannya kira-kira hanya 30 kali. Kalau diaplikasikan secara real, misalkan tegangan input v1 = 5.05 volt dan tegangan v2 = 5 volt, maka dalam hal ini tegangan diferensialnya (differential mode) = 0.05 volt dan tegangan persamaan-nya (common mode) adalah 5 volt. Pembaca dapat mengerti dengan CMRR yang makin besar maka op-amp diharapkan akan dapat menekan penguatan sinyal yang tidak diinginkan (common mode) sekecil-kecilnya. Jika kedua pin input dihubung singkat dan diberi tegangan, maka output op-amp mestinya nol. Dengan kata lain, op-amp dengan CMRR yang semakin besar akan semakin baik.
 
Penutup 
     Uraian diatas adalah rumusan untuk penguatan opamp ideal. Pada prakteknya ada beberapa hal yang mesti diperhatikan dan ditambahkan pada rangkaian opamp. Antara lain, Tegangan Ofset (Offset voltage), Arus Bias (Bias Current), Arus offset (offset current) dan lain sebagainya. Umumnya ketidak ideal-an op-amp dan bagaimana cara mengatasinya diterangkan pada datasheet opamp dan hal ini spesifik untuk masing-masing pabrikan 
    LM714 termasuk jenis op-amp yang sering digunakan dan banyak dijumpai dipasaran. Contoh lain misalnya TL072 dan keluarganya sering digunakan untuk penguat audio. Tipe lain seperti LM139/239/339 adalah opamp yang sering dipakai sebagai komparator. Di pasaran ada banyak tipe op-amp. Cara yang paling baik pada saat mendesain aplikasi dengan op-amp adalah dengan melihat dulu karakteristik op-amp tersebut. Saat ini banyak op-amp yang dilengkapi dengan kemampuan seperti current sensing, current limmiter, rangkaian kompensasi temperatur  dan lainnya. Ada juga op-amp untuk aplikasi khusus seperti aplikasi frekuesi tinggi, open colector output, high power output dan lain sebagainya. Data karakteristik op-amp yang lengkap, ya ada di datasheet.
Diberdayakan oleh Blogger.